
Lab 4: Sampling and aliasing

Grading

This Lab consists of two exercises (one divided in three subexercises). Once you
have submitted your code in Matlab Grader AND once the deadline has past,
your code will be checked for correctness. Note here, that upon submission,
your code is already subjected to some basic checks that are aimed to verify
whether your code will compile; these basics checks don’t say anything about
the correctness of your submission. You can visit Matlab Grader again after the
deadline (give the servers some time to do all the assessments; this might even
take a few days) to see how well you did. In case Matlab Grader indicates you
failed an exercise, this does not automatically imply that you failed the entire
exercise. Each exercise is subjected to n tests, where the number of tests can
vary between exercises. In case Matlab Grader indicates you failed the exercise,
this means that not all tests were passed (e.g. in an exercise with 7 tests, you
could have passed 6 and Matlab Grader will indicate you failed the exercise).
Your grade is calculated based on the number of tests you passed and not on
the number of exercises you passed.

1 Introduction

In most situations where signal processing is applied, this is done by comput-
ers. The main reason for this is that the development of computer-based signal
processing methods is very flexible and relatively cheap. However, computers
cannot deal with analog (or continuous-time) signals, so in order to use comput-
ers in signal processing the signals first need to be converted from the analog
domain to the digital (or discrete-time) domain. For this we can use so-called
analog-to-digital (A/D) converters or continuous-to-discrete (C-to-D) time con-
verters. Such a C-to-D converter operates at a certain frequency referred to as
the sampling frequency fs. In other words, the signal is sampled by the C-to-D
converter at a rate of fs, or in intervals of Ts = 1/fs seconds. After the signals
are processed by the computer, e.g. FIR filtering which will be discussed in
Chapters 5 and 6 of this course, the processed signals are often converted back
to the time-continuous domain by a discrete-to-continuous (D-to-C) time con-
verter. The C-to-D and D-to-C converters do not necessarily have to operate
at the same sampling frequency, as you can see in the Figure below and as you
will see in Exercise 3.

1



2 Aliasing

Ideal
C-to-D

Convertor

x(t) x[n]

fs1 = 1/Ts1

y(t)

fs2 = 1/Ts2

Ideal
D-to-C

Convertor

Figure 1: Ideal C/D and D/C conversion

In Figure 1 above, the time-continuous signal at the input is described by
x(t). This signal is then converted by the C-to-D converter operating at sam-
pling frequency of fs1 to obtain the time-discrete (or digital) signal samples
x[n], which can be processed by digital signal processing methods. Afterwards,
the time-discrete x[n] is converted to the time-continuous domain by the D-to-C
converter that operates at sampling frequency of fs2 to yield the time-continuous
signal y(t).

The topic of this lab is understanding the concepts of sampling and recon-
struction and to understand when and how aliasing occurs in this process.

Exercise 1 [7 tests]

Consider the signal x1(t) = A1 cos (2πf1t+ φ1), with amplitude A1 = 2, fre-
quency f1 = 5[Hz], and phase φ1 = π/3. Create 2 plots underneath each other
(making use of the subplot function) and plot x1(t) over two periods in the first
plot and use 100 time values per period with 201 time values in total.

Calculate the values of x1(t) for t = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
0.4 seconds and store these results in the vector xn1

. In addition, make a time
vector tn that ranges from [0, 0.4] seconds with 9 time values. The vector xn1
describes the time-discrete signal x1[n], sampled at a rate of 1/0.05 = 20 Hz.

Use the same plot for x1(t) from the previous exercise and add a ”stem” for
xn1 at the positions specified by tn. Tip: Use the help function of MATLAB
to acquire information about this function. You should use the second variant
that gets displayed.

In the second plot, plot the signal x2(t) = A2 cos (2πf2t+ φ2) with A2 = 2,
f2 = 25[Hz], and φ2 = π/3. Calculate x2(t) for 10 periods and use 100 values
per period with 1001 time values in total.

Calculate the values of x2(t) for t = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
0.4 seconds and store these results in the vector xn2. The vector xn2 describes
the time-discrete signal x2[n], also sampled at a rate of 20 Hz.

In the second plot, also add a ”stem” for xn2 at the positions specified by
tn. Note: it is not necessary to define a new tn, you must re-use the tn defined
before. Do you notice any difference between the samples of x1[n] and x2[n]?

IMPORTANT: The order in which the plots should occur, are for each sub-
plot ’signal’ followed by ’stems’.

2



3 Sampling

From the previous exercise you can see that, in case we would sample the sinu-
soidal signal with frequency f1 = 5[Hz] at a sampling frequency of fs = 20[Hz]
and do the same for the sinusoidal signal with frequency f2 = 25[Hz], we have
a problem of ambiguity. The samples we made do not only describe the 5 Hz
signal, but also the 25 Hz signal. In fact, they describe an infinite number of
other periodic signals, of which the one you plotted with a frequency of 5 Hz is
the one with the lowest frequency.

Exercise 2

In this exercise you will write a function that can convert any sinusoidal input
signal to its output signal. Aliasing is an important aspect of this exercise that
you will deal with. To create this function, the exercise is split up in different
parts which will progressively contribute to the final fully functioning function.
All sub-exercises are individual exercises, so the requirements per sub-exercise
are only listed in the corresponding sub-exercise.

Consider the situation from Figure 1, where fs1 = fs2 = fs = 1/T1. The
following equations are a generalization of the calculations required for obtaining
the output signal. Just in this example the sampling frequencies are equal.

x(t) = A0 cos(2π · f0 · t+ φ0) (1)

x[n] = x(t)|t=n·T1
= A0 cos(

(
2π · f0

fs

)
· n+ φ0)

≡ A0 cos(θ0 · n+ φ0) with θ0 = 2π
f0
fs
∈ (−π, π] (2)

y(t) = x[n]|n=t/T1
= A1 cos(2π · f1 · t+ φ1) (3)

Exercise 2a [4 tests]

Write a MATLAB function that, given the frequency f0 of the input signal
and the C/D sampling frequency fs, calculates the normalized frequency θ0
and manipulates it to fit in the given domain of θ0 ∈ 〈−π, π] . The positive
normalized frequency, obtained from the positive frequency of the input signal,
should be taken as a starting point. The function should return the manipulated
normalized frequency θ0. The use of conditional statements (if, else, while)
might be useful. Use the template provided in Matlab Grader!

Exercise 2b [4 tests]

Now assume the fixed input signal: x(t) = cos(2π · 175 · t + π
3 ). Alter the

function, written in exercise 2a, to have as input variables: C/D and D/C
sampling frequency fs1 and fs2 respectively. Keep in mind that these sampling
frequencies are not always equal! The function has to calculate the (positive)
frequency of the output signal (f1 in Hz) and the corresponding phase (φ1) and

3



output them in this order. The function also has to plot (not the stem-plot!)
the output signal y(t) with the calculated variables on the time span [0, 0.1]
seconds with a total of 1001 time values.

Exercise 2c [7 tests]

Now the previous exercises will be generalized. You will create a function that
accepts (the parameters of) a input signal and the (possibly different) sample
rates and that plots the output signal. Create a function that accepts the
following input variables: A0, f0, φ0, fs0 and fs1 in this order. The function
should use these variables of the input signal and the C/D- and D/C-converters
to construct the output signal. The output signal should be plotted on a time
domain [0, 0,05] seconds with exactly 1001 time values.

Testing

Because of the complexity of this exercise, the testing criteria of exercise 2c will
be given for you so you can verify your output by hand.

Test A0 f0 θ0 fs1 fs2
1 1 100 0 400 400
2 2 100 π/3 400 400
3 1 200 π/3 100 100
4 2 200 π/3 60 60
5 2 175 π/3 100 100
6 1 100 π/3 400 500

4


